
Project Integration Architecture:
Initial Plan for Distributed User Authentication and Access Control

Dr. William Henry Jones
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field

Cleveland, OH 44135
216-433-5862

William.H.Jones@grc.nasa.gov

X00.02 17 May 2001
X00.01 08 May 2001
X00.00 02 May 2001

Keywords:
PIA; PRICE; Application Integration; Distributed Lock Managment; Security;
Distributed User Authentication; Distributed Access Controls; Trusted Servers

ABSTRACT: The Project Integration Architecture (PIA) application wrapping architecture is being migrated from its
current demonstration implementation in the C++ language to a distributed, net-accessible implementation based upon the
Common Object Request Broker Architecture (CORBA). It is explicitly assumed that in this distributed form, multiple users
and multiple simultaneous accessors of individual objects, their methods, and their information will be an unavoidable
fact of life. This paper develops the initial strategy for assuring the security and integrity of objects and their information
in such an environment.

1 Introduction

In the late 1980’s, the Integrated CFD and Experiments
(ICE) project [1, 2] was carried out with the goal of provid-
ing a single, graphical user interface (GUI) and data man-
agement environment for a variety of CFD codes and re-
lated experimental data. The intent of the ICE project was
to ease the difficulties of interacting with and intermingling
these disparate information sources. The project was a suc-
cess on a research basis; however, on review it was deemed
inappropriate, due to various technical limitations, to ad-
vance the effort beyond the successes achieved.

A re-engineering of the project was initiated in 1996 [3].
The effort was first renamed the Portable, Redesigned In-
tegrated CFD and Experments (PRICE) project and then,
as the wide applicability of the concepts came to be appre-
ciated, the Project Integration Architecture (PIA) project.
The provision of a GUI as a project product was elimi-
nated and attention was focused upon the application wrap-
ping architecture. During the intervening years, work has
proceeded and an operational demonstration of the PIA
project in a C++, single-machine implementation has been
achieved.

1.1 Task

The next phase of work focuses on the migration of
the PIA Application Classes into a net-enabled, net-
accessible, distributed-object architecture. In this vision,
each wrapped application would be served out onto the
net (intended ultimately as being the global internet) by
a server program. In some instances, two or more appli-
cations might be served by a single program; however, in
most instances geographically dispersed servers dedicated
to single applications are envisioned.

This vision brings with it the unavoidable consequence of
multiple users and simultaneous access. The broad goal,
then, is to devise mechanisms to assure the integrity of indi-
vidual objects, the information they contain, and the struc-
tures of which they are members in such a multiple-user,
mutliple access environment.

A base has been laid for this task with the migration of the
PIA Foundation Classes to the Common Object Request
Broker Architecture (CORBA). A distributed, per-object
lock mechanism [4] has been devised which assures infor-
mation integrity in a multiple access environment. The key
interfaces involved in this base are as follows.

1



1. GObjLck : A lockable base interface. This interface
recognizes the concept of locking an instance for oper-
ational purposes. The vast majority of PIA foundation
interfaces are derived from this interface.

2. GLockCtx : A context within which locks are held.
Each logical thread of execution acquires its own
GLockCtx instance which holds the various locks
necessary to perform a specific operation. The im-
plementation also provides the intelligence to avoid
re-acquiring locks that are already held, thus reducing
the lock system overhead.

3. GLock: The lock interface, itself. This is the actual
lock mechanism. Each lockable instance, typically a
derivative of theGObjLck interface, acquires an in-
stance of theGLock interface to perform the actual
locking act. The lock provides a simple grant/deny
decision to a lock request, rather than blocking a re-
questor until the lock can be granted. Further, the
lock keeps track of all contexts to which it has granted
locks in order to facilitate deadlock detection by a lock
context when a requested lock is repeatedly denied.

The key feature of this locking mechanism is that it is dis-
tributed just as the objects it locks are distributed. There
is one lock for each object and, typically, the lock exists
on the same server as the locked object. The limit on si-
multaneous lock operations is, thus, the same as the limit
on servable objects. There is no centralized locking author-
ity to slow down an otherwise distributed, scalable object
system.

In this system anyGLockCtx instance may obtain a lock
on anyGLock instance. There is no concept of differ-
entiation between lock contexts, nor of an access control
which would prohibit a particular context from obtaining
a lock that another lock context would be granted. This
must be added in the implementation of the PIA Applica-
tion Classes to the CORBA distributed object environment.

Thus, the first goal is to introduce the concept of a user
whose identification can be established and, with such an
identification, extend the locking paradigm to include the
question as to whether or not this user has the right to ob-
tain the requested lock before the actual lock mechanism is
operated. This extension, alone, is a relatively simple task.

What makes this first goal interesting is that it brings with it
a second goal: establishing that the facts used in processing
a lock request are, in fact, true.

2 Security Presumptions

The user authentication and access control mechanism is
founded upon two security presumptions.

2.1 Integrity of the Server

It is presumed that the server of an object suite is trustwor-
thy within its software boundaries. That is, an object served
by a particular server may expect that another object served
by that same physical server operates in accordance with its
interface description and the supporting documentation.

This presumption is based upon the expectation that no
server would exist for the purpose of hacking itself. A
server which could not expect its own served objects to op-
erate correctly would be useless to those creating the server
and, thus, would not be created.

2.2 Integrity of Other Servers

It is presumed that a bond of trust can be recorded between
two servers. It is presumed that this bond will be estab-
lished by some non-automatic means, probably between
people who decide between themselves that each server
is conforming to the appropriate security mechanisms and,
thus, can be trusted. This bond is then recorded in each
server through some priveleged act.

This bond then can be formed into a graph when multiple
servers are involved. If A trusts B and B trusts C, then
A trusts C. There is also a recognition that A may trust C
somewhat less than it trusts B.

This presumption of trust between servers is somewhat less
reasonable than that of trust within a server. It would be
possible for a person to lie about the integrity of a server,
or for an auditor to miss some cunningly devised flaw, and,
thus, for a security breach into the system to be opened.
No automated tool to establish the integrity of a server is
currently proposed; however, it is possible that such a tool
might be devised at some point in the future.

3 Interface Suite

Both derivative and new interfaces must be involved in the
user authentication and access control process.

1. GacBObj: A GObjLck derivative, this basic lockable
object introduces the idea that it doesn’t necessarily
trust the context in which a lock is to be requested.

2



The interface also provides a connection to the access
control description for the instance.

2. GacDescAccs: This interface, and its attendant com-
ponents, provides the data to feed the access control
process for a particular object.

3. GacLockCtx: A GLockCtx derivative, this lock con-
text adds the concept of user identity by providing a
reference to a singleGacUserinstance.

4. GacUser: This interface identifies a user and, when
needed, provides a link back to that user for password
(or somesuch) solicitation.

5. GacLock: A GLock derivative, this lock form under-
stands that an access control list must be processed to
determine whether the requesting lock context is enti-
tled to hold the requested lock before any determina-
tion as to whether or not that lock can be granted is
made.

6. GacSrvrCtl : A GSrvrCtl derivative, this server ob-
ject must establish the validity of theGacLockCtx in-
stance and the user it identifies.

4 The Process

The following subsections discuss the expected flow of
events to grant access to an instance of aGacBObj-derived
interface.

4.1 Lock Process Initiation

An instance, following the form established in the foun-
dation classes, is responsible for locking itself. Thus, a
method, upon invokation, must obtain the appropriate lock
for the intended operation before that operation is begun in
substance. (In some cases, modulation of the locking state
throughout the operation may occur, but this can be consid-
ered as the operation of multiple interior methods within a
containing method and, thus, does not impact the present
discussion.)

In the established locking architecture, the lock request
was made by theGObjLck interface not to the associated
GLock instance directly, but to theGLockCtx lock context
with a reference to the appropriateGLock instance pro-
vided. This was done to allow theGLockCtx instance to
determine whether it might already hold the required lock
and, thus, short circuit the overhead of the lock mechanism.
(Multiple locking of the same instance is likely as methods
invoke methods on the same instance to perform compo-
nent tasks.) The consequence of this, though, is that it is

theGLockCtx instance which returns to the method the in-
formation that the needed lock has, in fact, been obtained.

The wrinkle to the basic system thatGacBObj must now
add is a fundamental distrust of the lock context object.
Since it is the lock context object which returns the final
disposition of the lock action, a corrupted lock context ob-
ject could be devised and provided that would report the
granting of locks when those locks had, in fact, been denied
by or, more likely, never even requested of theGacLock
instance. Thus,GacBObj must be coded to ask the ‘sys-
tem’, in our scheme theGacSrvrCtl instance, to establish
the integrity of the requestingGacLockCtx instance be-
fore initiating the lock process by a call to that lock context
instance.

4.2 Lock Context Validation

TheGacSrvrCtl interface (of which there is to be exactly
one instance for each server program) has the job of deter-
mining the validity of aGacLockCtx instance intended to
carry out a lock act.

In the first wack at this task element, it was proposed that
a lock context instance be considered to be valid if it was
either

1. Served by the server serving the validatingGac-
SrvrCtl , or

2. Served by a server reachable through the trusted server
graph of which the validatingGacSrvrCtl instance
is a member, that server being reached directly, indi-
rectly, or indirectly through a path of no more than a
specified length.

The use of theislocalfunctionality provided by all CORBA
objects was considered inappropriate since a lock context
designed to breach the security system could certainly re-
spond falsely to this method, as indeed it could to virtually
any method.

This first proposed security standard has been discarded
when it was realized that a corrupt lock context could tie
itself to an uncorrupt lock context for the purposes of sat-
isfying security tests (which would be satisfied by the tied
lock context) while substituting corrupt lock actions when
those were invoked.

Thus, the revised scheme is a simple, operational one. A
lock context instance to be validated will simply be exer-
cised by the validatingGacSrvrCtl instance in attempts

3



to lock and release various system-provided lock targets
whose responses are known to the testingGacSrvrCtl . A
certain randomness will be introduced into this testing so as
to eliminate the possibility of a corrupt lock context being
developed to always operate to standards for, say, the first
lock attempt, and the corruptly thereafter.

Furthering this new proposed validation method, the graph
of trusted servers will not be utilized for this validation.
In this way, further randomness will be introduced into the
validation process since it will be difficult to predict when
a lock on some other server might be requested, causing a
revalidation of the lock context.

The lock targets of this validation process are to be
GacLock instances whose lock request responses have
been forced to known conditions programmed by the uti-
lizing GacSrvrCtl instance. Such programmed responses
need to be a protected function of theGacLock interface
so that a corrupt lock context tied to a valid lock context
may not switch to its tied accomplice when such a lock is
encountered as its target.

To further meet anticipated paranoia, the test lock(s) should
be connected back to the instance requesting the lock vali-
dation. This will disallow the possibility of a corrupt lock
context keying its operation (through theGetLockedOb-
ject method ofGLock) to the instance it was intended to
corruptly lock. To further circumvent this attack, it is im-
portant forGacBObj-based interfaces not to provide the
ability to identify their controlling lock instances.

This last effort suggests that theGacSrvrCtl will want to
keep a pool of test lock instances readily at hand so that an
individual instance may be devoted to testing a individual
lock context.

4.2.1 Cacheing Validated Lock Contexts

In order to short circuit the time consuming task of a com-
plete validation search for each locking act (which might
be repeated many times for a single method invokation
from an external source), theGacSrvrCtl will doubtless
want to maintain a cache of previously validated lock con-
text instances. For reasons that will be explained later, the
cache will want to associate the validated lock context ob-
ject with the final user identification referenced by it, so
a GMapGObjToGObj -based implementation suggests it-
self for this cache.

In the event that validation involved a traversal of the
trusted server graph, it is probably appropriate for each
server control in the validating traversal to capture the val-

idated lock context in its own cache. That is, if A inquired
of B, who inquired of C, who inquired of D, who confirmed
that the subject lock context instance was valid, then D, C,
and B, in addition to A, should probably all capture the sub-
ject lock context in their validated lock context caches. It
may well be that B, C, and D will never need to validate that
lock context for themselves (that is, for operations within
their server), but the expense of validation might well out-
weigh the cost of capturing a validation that has already
succeeded.

Because theGacSrvrCtl object(s) will be maintaining a
reference to the validated lock context, it will be neces-
sary for the implementation of theGacLockCtx interface
to maintain a map of validatingGacSrvrCtl instances and
inform those instances when the lock context passes out of
existence. In this way validated lock context cache bloat
may be avoided.

The cache may wish to time-stamp entries for various pur-
poses.

1. A purge of the cache based on age may be appropri-
ate to keep the number of entries down and to re-
move validated lock contexts that have simply dis-
appeared from use without informing the validating
GacSrvrCtl .

2. It may be appropriate to periodically re-validate lock
contexts based on age. This is not planned for the first
implementation, but a security attack by exchanging
lock context implementations after validation might
be remotely possible.

4.2.2 Lock Context for Validation Operations

In order not to be a bottleneck, the lock context valida-
tion operation will, of course, operate in multi-threaded
server mode, just as all other method invokations do. This
presents a complication in that the structures used, in par-
ticular the cache of previously validated lock contexts, will
have to be locked. This will require a lock context to hold
the acquired locks and, since the subject lock context is yet
to be trusted, it cannot hold those locks. Furthermore, the
subject lock context might not have sufficient privelege to
hold such locks (although privelege may be a concept that
should be dispensed with for the sake of speed in the light
of the closely held nature of the structures involved). Fi-
nally, the subject lock context ought not to be bolloxed up
with a mess of locks not of interest to the thread of execu-
tion that it represents.

Thus, a series of ‘system’ lock contexts will be needed for

4



the use of theGacSrvrCtl instance in this effort. While
these might be created on the fly, it will probably be more
effective to maintain a pool of these lock contexts (one per
server thread, or perhaps a few more?) and devise a mech-
anism by which a thread can quickly acquire one.

Additionally, since these ‘system’ lock contexts will (or
may) be used in locking objects that know only the standard
locking system, it will be necessary for them (the lock con-
texts) to pass through the same validation process. Because
of their high frequency of use, a quicker cache dedicated to
these contexts may be appropriate.

4.3 User Identification

Having received assurance from the governingGacSrvrCtl
instance that the identifiedGacLockCtx object is trustwor-
thy, theGacBObj-based instance then invokesRequest-
Lock in presentation by that lock context instance. At
present, no altered behavior in that functionality is antic-
ipated and it, after assuring that the desired lock is not
already in its possession, further invokesRequestLockin
presentation by the identifiedGLock-based lock instance,
presumably that being aGacLock instance.

OverridingRequestLock functionality in GacLock must
first determine whether access controls exist for the con-
trolled object. If such controls do exist, they are to be pro-
cessed before the basic lock mechanisms are operated. A
user identification is required for the operation of this pro-
cess.

The matter of user identification (other than user ‘root’) is
of some import. The derivedGacLockCtx interface is to
provide a reference to a single, correspondingGacUserin-
terface instance. TheGacUserinstance may (or may not)
carry along a text string (perhaps encapsulated in aGString
object) identifying the user by name and host name, but
it definitely is to provide a call-back function to prompt
the (supposed) user for a user identification and password.
The retention of user identification by theGacUser in-
stance is considered to be optional for the purposes of
the system because the lock context and user identifica-
tion instances are presumed to be under the control of the
user/hacker; thus, they could be modified after initial val-
idation/authentication and their persistent contents would
not be trusted.

User authentication is to occur only as needed, that is, when
and if an access control hierarchy is to be processed. (There
may be some cases in which a lock context serves with-
out ever requesting access to a controlled instance.) At the
point that theGacLock instance determines that it will pro-

cess an access control hierarchy, it is to go back to its vali-
datingGacSrvrCtl instance and ask for the user identifica-
tion associated with the lock context.

If no user identification has been associated with the lock
context, the authentication call-back function is invoked in
presentation by theGacUserinstance to obtain a user iden-
tification and password. The user identification is to in-
clude the full host name of the user’s machine, for example

enjones@witsend.grc.nasa.gov

Such an identifier seems appropriate for network-wide
identifications, distinguishing oneenjonesfrom the next.
Because of this, authorized user identification entries will
need to be in the form ofPGrep expressions so as to allow,
if desired, users such asenjonesto log in from any machine
at grc.nasa.gov. As in the C++ implementation, the grep
expression should be coded with care to assure that it does
not allow unexpected identifications, such as

enjones@witsend.grc.nasa.gov.redsquare.ruskiland

to get through.

Once the identification and password are in hand, a search
is made of authorized user entries in theGacSrvrCtl in-
stance. If an appropriate entry does not exist in the present-
ing GacSrvrCtl instance, a traversal of the trusted server
graph is to be made in search of a trusted server control
that can authenticate the user identification. Whether or
not some depth of trust restriction should be placed on this
traversal is yet another matter open for discussion.

Assuming that an authentication is obtained, the next step
it to enter the resulting user identification in the validated
lock context cache. Also, if other servers have cached
the validated lock context simply by virtue of being in the
trusted server graph path from requester to validator, those
other caching servers should be informed of the user iden-
tification obtained.

(There may be some issue in trusting a validated lock con-
text to provide a traversal of cacheing servers since that
lock context is under the control of the user/hacker; how-
ever, at this point no profit can be seen in the possibilities.
The malacious user can achieve only two things by adjust-
ing the list of cacheing servers: actual trusted servers may
fail to be informed of an authenticated user identification
and untrusted servers may be informed of an authenticated
user identification. For the first possibility, this means only
an increase in overhead in the event that uninformed servers
should need the identification in that they would then initi-
ate what is, in fact, a redundant authentication interaction.

5



For the second possibility, it is difficult to see what advan-
tage can be gained by transmitting to a server the identifi-
cation (without a password, hashed or otherwise) of an au-
thenticated user. Certainly a malicious user would already
know his own identification and have no need to resort to
such subtrefuges to learn it.)

4.3.1 User Identification and Password Management

Having established that theGacSrvrCtl instance will
maintain a user identification/password data base, it will be
necessary to provide functions and utilities to access and
manage that data base. These operations should be per-
formed only by priveleged users charged with maintaining
the server program.

4.4 Access Control List Processing

Having obtained from the residentGacSrvrCtl instance a
user identification, theGacLock instance may then pro-
ceed with access control list processing. For the most part,
this is a mundane task.

The access control process is one of matching a user iden-
tification against an ordered hierarchy of access control en-
tries and applying the access result of the first such match-
ing entry encountered. The access control grants access in
modes matching the lock modes: Reference, Read, Write,
Execute, and Delete. Release access is granted to all users
since the only function of this access is to let go of an ob-
ject.

The entire access control mechanism should probably be
short circuited in the event that the identified user is
‘root@local host’, or perhaps just ‘root’. This will elim-
inate the overhead of adding an unlimited-access access
control entry for ‘root’ to every object ever created.

As mentioned above in user identification, the access con-
trol list entries will want to be made in terms of aPGrepex-
pression so that user identifications (which are, themselves
to be exact) can be, in effect, wild carded. This, again, will
allow enjonesto obtain access from any machine ending
with a domain of, say,nasa.gov.

Another issue to be consider is what to do in the event that
no definitive access control determination is made. (This
situation arises, really, in only one way: there is no access
control entry matching the identified user. Whether there
are entries, but none match, or whether there is simply a
complete absense of an access control mechanism is, in
fact, beside the point.) It is expected that this situation will

be resolved by a characteristic of the controlledGacBObj
instance indicating whether an indeterminate result should
result in complete access or no access. Whether or not there
is need to allow for global selections, perhaps solicited for
the localGacSrvrCtl instance is yet another question open
for further discussion.

4.4.1 Controlling Default Access

The default access selection characteristic for an object is,
of course, another point of concern. A malicious user that
was able to change the default access from none to all
would circumvent the entire access control process. Thus,
it is important to assure that the setting of the object char-
acteristics be controlled just as all other things in a secured
object are. It would be appropriate to override the instance
charcteristic functionality to provide the same access con-
trol requirements (Execute access, rather than the default
Write access, as discussed in the next section) on the de-
fault access characteristic as will be applied to the access
control list itself.

4.4.2 Controlling the Access Control List

The ability to amend to access control list is also a point
of concern. At present, the is no Control lock or access
class. It is currently expected that access control list ad-
justment operations will be performed under an Execute
lock, which assures exclusive access to the object and de-
nies control priveleges to those merely allowed to change
the object data (Write access).

If it is determined that the finer access resolution is needed,
it is a relatively small matter to add an Access lock level
to the system. This involves only the introduction of the
symbolic definition and the expansion of theGLock state
table from a 6-by-6 matrix to a 7-by-7.

4.4.3 Access Control List Hierarchy

The access control list is encapsulated through the
GacDescAccsinterface and its components. This is a de-
scriptive element interface and, as such, is attached to a
GacBObj instance through the layered descriptive system.
The normal order of search is from the shallowest descrip-
tive layer to the deepest.

Should a search of attached access descriptions for a
GacBObj instance fail to produce a definitive answer,
the possibility exists that the search could be continued

6



through the uplink chain implemented by theGacBObj in-
terface. Thus, the instance defining the containing structure
(for example theGacCfg containing aGacPara instance,
and then theGacAppl containing thatGacCfg) would be
searched. By this means, access to broad groups of objects
could be controlled by single access control lists.

4.4.4 Access Control List Management

Having established thatGacBObj-based instances will
maintain an access control data base, it will be necessary
to provide functions and utilities to access and manage that
data base. These operations should be performed only by
priveleged users charged with maintaining the served ap-
plication. Probably, these will be the same as those that
maintain the server, but it is possible for these users to be
distinct sets.

4.5 Lock Mechanism Operation

Presuming the access control hierarchy processing has de-
termined that the identified user is permitted to obtain the
kind of lock desired, theRequestLockfunctionality inher-
ited from theGLock base interface is now invoked to deter-
mine whether or not the present conditions allow the grant-
ing of the lock. The grant/deny decision is then transmitted
back through theGacLockCtx instance to the originating
GacBObj method which then proceeds with operations, or
aborts them, as appropriate.

4.6 Access Event Notification

While the GacLock interface itself is not a derivative of
the GacBObj class it will, customarily, be locking in-
stances of that interface and, through theIsKindOfInter-
facemechanism it can be determined when this is, in fact,
the case. TheGacBObj interface will, of course, sup-
port the event mechanism prototyped in thePacBObj and
PacEvent classes. By combining these capabilities, it is
possible to implement an access event mechanism, allow-
ing monitoring and other facilities to be informed when ac-
cess is granted and, more importantly, when it is denied.

When this access event mechanism is implemented, it will
be necessary to provide a mechanism to establish the ulti-
mate destination as being trusted. The exact nature of this
determination is yet to be established. It may be that a spe-
cial access control lock will be sufficient for a first attempt
in this area.

The reason for such security precautions is simply that
the stream of access denial and, particularly, grant events,

which will presumably identify authorized and unautho-
rized users, could be of some use to a user/hacker. In break-
ing into any system of security, it is usually an important
first step to know the identify of those who can be granted
access.

5 Depth of Trust Algorithm

The various operations traversing the graph of trusted
servers should be devised with a depth limit in their op-
eration. A depth argument should be passed to the visi-
tation function and decremented as the visitation function
is re-invoked for the immediate successors of the visited
node. Should this depth argument reach 0, further traversal
should be terminated and functional return made.

In general, the initial depth of trust will be set to a practical
infinity, probablyMAXLONG or some such. At present,
no purpose is identified where a small depth of trust is pro-
posed. It might be valuable for user authentication at some
point in the future.

A small inaccuracy arises from the nature of directed graph
traversals in implementing the depth of trust concept. Sup-
pose A trusts B, who trusts C and D, and further that C
trusts D. The depth first path to D from A is A to B to
C to D, giving a depth of trust for D of 4; however, the
shortest path to D is A to B to D, giving a depth of trust
of 3. In this example, the error is small; however, a graph
can certainly be arranged in which the discrepancy is large.
Should depth of trust restrictions be imposed, an algorithm
to resolve this error would be of considerable interest. Un-
fortunately, classic graph traversal algorithms do not imme-
diately suggest a solution, especially a quick and effective
one. So it goes.

6 General Event Security

There are wider security implications to the event mecha-
nism to be implemented by theGacBObj class than simply
controlling the stream of access grant and denial events.
The event mechanism is intended to provide, at least in
some cases, corrective responses to application operations.
Thus, a heightened level of security should be applied to
those attempts to attach such mechanisms.

While a complex plan of validation and authentication was
at first proposed, it is now thought that the basic access con-
trol mechanism of the interface system will be sufficient.
A user with write, execute, and control access to an object
can achieve corruption and malfunction without the neces-

7



sity of resorting to event mechanism subterfuges. Thus,
the application of such access controls to the mechanism
attachment process should be sufficient protection in this
area.

References

[1] The American Society of Mechanical Engineers.In-
tegrated CFD and Experiments Real-Time Data Ac-
quisition Development, number ASME 93-GT-97, 345
E. 47th St., New York, N.Y. 10017, May 1993. Pre-
sented at the International Gas Turbine and Aeroengine
Congress and Exposition; Cincinnati, Ohio.

[2] James Douglas Stegeman. Integrated CFD and Ex-
periments (ICE): Project Summary. Technical mem-
orandum Number not yet assigned, National Aeronau-
tics and Space Administration, Lewis Research Cen-
ter, 21000 Brookpark Road, Cleveland, OH 44135, De-
cember 2001.

[3] William Henry Jones. Project Integration Architecture:
Application Architecture. Draft paper available on cen-
tral PIA web site, March 1999.

[4] William Henry Jones. Project Integration Architec-
ture: Distributed Lock Management, Deadlock Detec-
tion, and Set Iteration. Draft paper available on central
PIA web site, April 1999.

8


